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Hyperbolic conservation laws have scale invariance symmetry. In this paper we study an example
of the breaking of such symmetry which occurs when the coefficients of a scalar hyperbolic equation
are themselves solutions of an elliptic equation. Qur model problem is related to wave refraction
that occurs during two-phase incompressible flow in a porous medium consisting of two homo-
geneous layers. With the aid of formal and computational mathematics we study the evolution
of the angles made by intersecting discontinuities. The space of scale symmetric solutions for the
refraction problem changes discontinuously at a certain point in the parameter space. At this
point the solution space is two-dimensional, but at other points it is one- or zero-dimensional,
i.e., isolated. We introduce approximate scale breaking elementary waves as formal constructions
which give a uniform two-dimensional solution space. A stability analysis determines the region
of the parameter space where the isolated exact solutions are stable. Qur numerical experiments
give an independent verification of the formal results. © 1991 Academic Press, Inc.

1. INTRODUCTION

Recent years have seen remarkable progress in the understanding of scale
symmetric solutions for hyperbolic conservation laws [1-5]. These solutions
are known as Riemann solutions; the Cauchy problem they solve is the Rie-
mann problem, i.e., the initial value problem for a hyperbolic conservation
law with data invariant under (x, 1) = (ax, at) for a > 0. Striking new
phenomena in the form of novel nonlinear wave structures and wave inter-
actions have been discovered and shown to arise in important examples.

Symmetry breaking occurs when the solution of a differential equation has
a smaller symmetry group than that of the equation and its data. Although
translational symmetry breaking for Riemann solutions has been considered
previously [6-9], scale symmetry breaking has received less consideration.
The central point of this paper is that scale invariance symmetry breaking
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has a role to play in the analysis of hyperbolic wave interactions. We consider
a class of hyperbolic conservation laws and a point in the parameter space of
these equations at which the space of symmetric solutions changes discontin-
uously. In a neighborhood of such a point there can be no uniformly valid
asymptotics within the class of symmetric solutions.

In this paper we study approximate scale breaking solutions of Riemann
problems. The equations are a simplified version of those for two-phase flow
in porous media in two spatial dimensions, as motivated by petroleum en-
gineering. The Riemann problem we consider is the interaction of a phase
discontinuity in the fluid, i.e., a Buckley-Leverett front, with a geological
layer, i.e., a jump discontinuity in the equation coefficients. The point of
interaction of the layer interface and the front is called a node. The Riemann
solution is largely determined by the dynamically stable angles formed between
the front and the layer interface at the node. It can thus be thought of as a
wave refraction problem, or a nonlinear extension of Snell’s law.

The refraction of a wave front at a medium discontinuity is termed passive
if the incoming front can have an arbitrary configuration with respect to the
interface. For example, the refraction of light by an air-water interface is
passive. In contrast, we call a refraction process active if the configuration of
the incoming front is determined by the process. Glimm and Sharp [10]
observed this phenomenon in their analysis of two-phase incompressible flow
in a porous medium that is composed of two homogeneous regions of distinct
permeability. The incompressibility condition results in an elliptic equation
for the pressure which allows the downstream data to influence the upstream
velocity field. This velocity, in turn, modifies the configuration of the incoming
front until a specific angle of incidence forms.

In our similar model equations, the velocity is proportional to the gradient
of the pressure which satisfies an elliptic equation. It is well known that elliptic
equations do not have regular solutions at a “corner” in the domain of the
equation. This implies that the velocity at the node is not, in general, finite
(it can be zero or infinity). Rather the velocity has a power law dependence
on the distance from the node. In order to study nonfinite velocities in the
refraction we introduce approximate elementary waves. These are singular,
scale breaking, transient constructions which satisfy Snell’s law on a circle
centered at the node. The strength of the singularity in the velocity field at
the node determines the relaxation time for these constructions to achieve
stable configurations.

2. THE FLOW EQUATIONS

The model equations governing two-phase (e.g., water and oil) incom-
pressible flow in porous media, in the absence of capillary and gravity forces,
are
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d(x)s, + V- f(s,x)v=0, (1a)
v=—A(s, x)VP, (1b)
V.v=V-AVP=0. (1c)

Here s is the saturation of the water phase, measured as the volume fraction
of the fluid mixture. The total flux, or volumetric velocity, of the fluid mixture
is denoted v. The fractional flow function f is defined so that f'v is the vol-
umetric velocity of the water phase. ¢ is the medium porosity, the fraction
of the bulk volume available to the flow. A is the transmissibility tensor of
the flow and P is the fluid pressure.

Nonlinear hyperbolic equations such as (1a) tend to form weak solutions
that are discontinuous along curves called shock fronts [11-13]. We consider
the propagation of a shock in a medium where A is discontinuous across a
curve which we call a layer interface. Such an interface marks the boundary
between geologically distinct regions or layers in a medium. Typically ¢, f,
and hence s, are also discontinuous across an interface. We shall assume,
however, that ¢, f, and hence s, are continuous so as to reduce the number
of independent parameters in the problem. As a further simplification we
assume A is a scalar and is given by A = A(s, x) = m(s)k(x), where m(s)
> 0 is the mobility of the fluid, and k(x) > 0 is the permeability of the
medium. We consider an idealized medium where ¢ and [ are independent
of x, and k& is constant in each layer. Thus it follows that our main conclusion,
concerning symmetry breaking, is important in the simplest possible case,
and is not dependent on fine details of the problem formulation.

The selection of a physically correct discontinuity solution of hyperbolic
conservation laws is an important, well-known, problem, for which there are
a variety of partial answers. Diffusion terms are often used in this context,
but are not a panacea, in that, for certain systems, the preferred solutions
depend sensitively on the ratios of the components of the diffusion matrix in
the limit of small diffusion [14].

For one-dimensional Buckley-Leverett flow with a discontinuous fractional
flow function the Riemann solution develops a standing wave at the discon-
tinuity which may interact with other waves passing through the site. In the
case of a double layer discontinuity, the solution behaves discontinuously in
the limit as the double layer thickness approaches zero [15]. A similar phe-
nomenon is known from combustion theory, in which a thin double layer
temperature discontinuity (i.e., a spark) will initiate combustion and cause
a distinct solution.

The thrust of this paper is, however, distinct. Not only do we consider
single rather than double layers, but, moreover, our problem has too few, not
too many scale symmetric solutions. The scale symmetric solutions we con-
sider are composed of waves which satisfy viscosity entropy conditions. In
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this sense, symmetry breaking, rather than the entropy condition (i.e., existence
rather than uniqueness), is the subject of this paper.

3. Jump CONDITIONS

At each point on a discontinuity curve C, a pair of jump conditions are
satisfied which express the incompressibility of the flow and the continuity
of the pressure. Assume n is a unit vector normal to C at (X, ¢) and t is a
vector tangent to C at the same point. For any quantity g(x, ¢), define g_
and g, at (xg, 1) by

g+ = lim g(xo + ne, t). (2)

e—0*

Then, using (1b) and ( Ic), the jump conditions for the velocity at x, can be
written as

Vo 'n=V,en=vp,, (3a)

= (3b)

Assume n is oriented such that the normal flux », > 0. If C is a shock
front then we define the mobility ratio as M = \_/\,. The “primary” shock
speed is ¢ = (f(s4) — f(5-)/(s+ — 5_), while the propagation speed of the
shock is av,/¢. If Cis a layer interface then we define the permeability ratio
as K= A_/A,.

We derive a sharp bound for the strength of the singularity of the velocity
field for approximate elementary waves in terms of the frontal mobility ratio
M. For M =~ 1 the singularity is weak and scale breaking solutions are dom-
inant. For M < 1 the isolated elementary wave solutions, obtained by Glimm
and Sharp, are shown to be stable. Moreover, stability improves if the upstream
layer is more permeable than the downstream layer, i.e., K > 1. Our results
are incomplete for M » 1. It appears that the only stable solutions in the
latter case occur when the incoming front, the velocity field, and the layer
are tangential at the node. Numerical experiments also indicate that when M
> | the layer-shock node acts as a nucleation site for a fluid fingering instability.

4. ELEMENTARY WAVES

Elementary waves are the simplest discontinuous solutions of nonlinear
hyperbolic equations. We define an elementary wave E(x, t) = (s(x, 1), v(x,
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t)), wherever s and v are well defined, as a scale invariant traveling wave
solution of (1). Thus

E(ax, at) = E(x, 1) for all a >0, (4a)
E(x+UT,t+T)=E(x,1) for all T, (4b)

where U is the propagation velocity of the wave. See also [16-19]. Here we
assume that ¢, f, and A satisfy (4), i.e., they are independent of x except
possibly for a discontinuity along a line parallel to U. We give a partial char-
acterization of elementary waves in the following lemma.

LEMMA 1. Let N, = Ut denote the location of the node at time (. Denote a
normal to x — N, by n. If E is an elementary wave solution of (1) then at any
time t, E is constant on rays in the x plane that start at N, and on which E is
well defined. If v is smooth in a region Q then v is constant in . Ifv=v,in
Q,, v = vy in Do, Vi # Vo, and a smooth curve C in the common boundary of
Q, and Q» then C is a straight line. If s varies smoothly across a ray from N
that passes through x then f'(s)v-n = ¢U-n. If s has a jump across the ray
then ov+n = ¢U-n.

Proof. From (4) we have for all & > 0

E(x,t) = E(x — Ut,0) = E(a(x — Ut), 0) = E(a(x — Ut) + Ui, )=
E(a(x — N;) + N,, ). Therefore E is constant on rays that start at N,. If v
is smooth in © then its divergence is zero. From above, v is constant on rays
starting at the node, hence it should be also constant in the direction normal

Sector 3 Shock Front
d Sector 2
Slow Layer hyp
d
Layer Interface

Fast Layer ;

hyp

Sector 4 Sector 1

Fast Flud Slow Fluid

FiG. 1. The notation for the layer-shock interaction. Sector 4, by definition, has the maximum
transmissibility, i = «y. In this picture iy, = a;.
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to these rays. Therefore v is constant in Q. If v, and v, are separated by C and
ii is the unit normal to C then by continuity of the normal velocity i+ (v, —
v2) = 0. Since v; — v, is a constant nonzero vector then fi should be constant
along C. Therefore C is a straight line. Finally define { = x — Uz, Where s is
smooth, (la) can be written as (—¢U + J'(8)v) Vs = 0. Since s is not
constant and n is perpendicular to { we have (—¢U + f'(s)v)+ n = 0. If s has
a jump across the ray then a similar argument based on the integral form of
(la) gives (—¢U + ov)- n = 0, yielding the required results.

In an elementary wave the region where s varies smoothly is called a fan.
In our problem we assume that a single shock divides the plane into two
regions with the saturation being constant on either side of the shock (ie:
no fan is present). The wave refraction problem is an example of a co-di-
mension 2 elementary wave. In Proposition 1, below, we identify all elementary
waves for our model problem.

5. THE LAYER-SHOCK INTERACTION

Consider a layer-shock interaction as depicted in Fig, 1. In sector j (j = 1,
2, 3, 4) the transmissibility is A;, the velocity is v;, and the opening angle of
the sector is «;. The angle between v, and the front is denoted a.

The elliptic and the hyperbolic equations differentiate amongst the four
sectors, the former according to the magnitude of the transmissibility and the
latter according to the flow direction. To reflect this fact we define two “angles
of incidence™; i for the elliptic equation, and Inyp for the hyperbolic equation.
Here i is the opening angle of the sector with the maximum transmissibility

o)

t=0 t=1

FIG. 2. Dynamical consistency condition. Both components of the wave propagate with the
same velocity.
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and iy, is the opening angle of the sector that is upstream with respect to
both the shock front and the layer interface. The “angles of refraction,” d
and d,,,, are then defined as the opening angles of the sectors opposite to i
and iyy,, tespectively. Hence d is the opening angle of the sector with the
minimum transmissibility and d,, is the opening angle of the sector which
is downstreaim with respect to both the front and the interface.

We shall assume that Sectors | and 4 (respectively, 2 and 3) constitute the
fast layer (respectively, the slow layer). Similarly Sectors 3 and 4 (respectively,
1 and 2) constitute the fast phase (respectively, the slow phase). Therefore
Sector 4 has the maximum transmissibility. We define the transmissibility
ratios R,, = M/A = M3/ M and R, = A /A = Mg/ h;. Hence R, = 1, Ry = 1,
i=as=m—a;,andd = an = T — a3. R,, and Ry, unlike M and K, are
independent of the flow direction.

The distinction between i and iy, becomes important only when we discuss
stability. / is identified with Sector 4 but iy, can be any of the four sectors.
In the last part of Proposition 1 we will see that there is an isolated elementary
wave for each of these four possibilities. (See Fig. 5 below.)

5.1. Dynamical Consistency Condition for Layer-Shock Interactions

Assume that C; and C; are the two segments of a shock front in an ele-
mentary wave solution of a layer-shock interaction that is propagating with
velocity U along the layer interface. (See Fig. 2) Let n;, j = 1, 2, represent a
normal to C}, v; - n; the volumetric velocity in the direction normal to Cj, ¢,
the porosity, and o; the primary shock speed for ;. Then from Lemma 1 we
have

ovem = ¢ U-ny, gav2 -y = U~ my. (5)

The assumption of continuity of [ and ¢ across the layer implies o; = o7 and
¢, = ¢,. Using these facts we write the law of refraction for elementary wave
solution as

Vi 1 VoIl
— = 6
U- n u- > ( )
We call this the dynamical consistency condition. (The local propagation ve-
locity v is consistent with the global propagation velocity U.)

5.2. Elementary Waves for Layer-Shock Interactions

The layer-shock elementary waves are specified by two transmissibility ra-
tios, R,, and R, and three angles, a, i, and 4. One might expect that once
R,., Ry, 1, and a are given then d can be determined. This is, however, im-
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possible in most cases. There are “very few” elementary wave solutions of
(1). In fact if we specify R,,, Ry, i, and g then the system of equations that
relates velocities and angles through the jump conditions and the dynamical
consistency condition will be overdetermined.

PROPOSITION 1. The only possible configurations for an elementary wave
of the type in Fig. 1 are:
(1) A plane wave solution for R, = 1. Here a and R,, are arbitrary and
d = i. This is a trivial solution in which the two layers are identical and there
is no refraction.
(I1) A family of passive refraction solutions for R,, = 1. Here Ry, i, and
a are arbitrary and the angle of refraction is given by

cotd—coti(l —i)cot(f+a). (7)
Ry

(See Fig. 3.) These solutions are also important in the verification of numerical
procedures.

(IIL) A family of stationary wave solutions. In this case a = 0° or 180°,
i.e., the flow is parallel to the front. Here i, Ry, and R,, are arbitrary and the
angle of refraction is given by

tan d = R;tan /. (8)

(See Fig. 4.) The node velocity for these solutions is U = 0.
(IV) Four isolated solutions. In this case a = 90°, i.e., the flow is normal

F1G. 3. The solution of a Riemann problem for unit mobility ratio. Note that the steady angles
on the refracted side are not present in the initial data but are established dynamically,
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o

FIG. 4. A stationary elementary wave.

d ) \
yp i
hyp

d d
i i
d
: hyp
hyp
(a) (b)
: d
hyp hyp
d d
¢ i
i
d A hyp
lyp ‘\
(c) (d)

FIG. 5. The isolated elementary waves. The angles of incidence and refraction are only a
function of the permeability ratio.
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to the front. (See Fig. 5.) Here R,, and Ry are arbitrary but both i and d are
determined in terms of Ry

tani=+VR,,  tand=+1/VR,. (9)

Hence, in terms of the number of angular degrees of freedom, type II so-
lutions are two-dimensional, type III solutions are one-dimensional, and type
I'V solutions are zero-dimensional. For a proof of Proposition 1 see [10].

In Proposition 2, below, we express the fact that when the incoming front
makes a small angle with the layer, then the front will pass through the interface
without significant refraction, provided that the velocity field does not also
make a small angle with the front.

PROPOSITION 2. In a configuration where i = d the jump conditions and
Snell’s law can be satisfied up to a relative error of O(sin i/sin a).

Here we sketch the proof of this proposition; for further details see [20].
We start with a velocity v, in Sector 4 and given values for i and d. To
compute the velocity in Sector 2 we can either use the jump conditions across
the 4-1 and 1-2 sectors to obtain v, or use the jump conditions across the
4-3 and 3-2 sectors to obtain v5. In general v, # v,. We notice that when
sin a # 0 the propagation velocity of the node tends to infinity as sin i — 0.
The difference between the node propagation velocity as defined by the in-
cident side and the refracted side will be finite if and only if i = ¢. When i =
d the relative error in the node propagation velocity will be O(sin i/sin a).
The discrepancy between v, and v5 may be measured by ||v, — v4 || /||v4]l, and
is O(sin 7).

6. APPROXIMATE ELEMENTARY WAVES

We have shown that the space of layer-shock elementary wave solutions
of (1) is disconnected. In particular, the structure of the solution space changes
at R,, = 1. This prompts us to search for approximate solutions in order to
obtain a uniform description of layer-shock interactions and their evolution.
In this section we present a class of approximate solutions which have the
correct limiting behavior near all the exact solutions. These constructions, at
a given time, satisfy the elliptic equation (Ic) exactly, but (1a), (4), and (6)
are only approximately satisfied. Our analysis of the approximate elementary
waves 1s at the level of formal mathematics and numerical analysis.

To introduce the approximate elementary waves, we start by assuming that
the wave has a configuration similar to Fig. 1 with the shock front approxi-
mated by straight lines near the node. We note that the general solution of
the pressure equation (Ic), subject to the jump conditions, has an elliptic
singularity at the node. Thus the pressure has a power law dependence on
the distance from the node, of the form r/, and the power / is near 1. As a
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result the velocity is proportional to #'~', which is either zero or infinity at
the node. To avoid the singularity we shift the focus of calculations from the
node to the perimeter of a circle centered at the node. This circle is denoted
as the base circle and we indicate its radius by 7.

The justification for the introduction of a new length scale r, into our
calculations lies in the fact that the idealized physical model (1) ignores the
capillary length scale H,,,. In order to compare to our numerical calculations,
which employ a discretization length scale Hy;s > Heap, we use a length scale
ro =~ Hgis in our theoretical derivations. It should be emphasized that the
numerical value of r, does not explicitly enter the computations; instead we
use dimensionless quantities (such as angles and velocity ratios) measured
on the base circle.

We return to the solution of the pressure equation (Ic). In a region where
A is constant the pressure is a harmonic function AP = (. Since the plane is
divided into four sectors bounded by straight lines we can use separation of
variables in polar coordinates to solve AP = 0 in each sector. Then the sep-
aration constant /? and the coefficients of the eigenfunction expansion for
each sector are determined by satistying the jump conditions.

When the mobility ratio is M = | the solution of the pressure equation
can be written in terms of a linear combination of real and imaginary parts
of 27, n=0,%1,2%2, . .uyz =+ y]/—_l. (Since there is no source, sink, or
multipole at the node we disregard the negative and zero eigenvalues.) For
each eigenvalue n there are two independent eigenfunctions. For example,
the leading pair of eigenfunctions corresponding to # = 1 are x = r cos # and
y=rsin 0.

To satisfy the jump conditions across both the layer and the front when A/
# 1 the eigenfunctions have to be a linear combination of real and imaginary
parts of z/, where in general / is not an integer. Moreover the degeneracy of
the eigenvalues is removed and in general there is only one eigenfunction for
each eigenvalue. In this case we write the nonnegative eigenvalues as 0 < /
= fi <h< lg oo

To obtain the eigenvalues and the eigenfunctions we set up a system of
linear homogeneous equations which expresses the jump conditions across
the discontinuity lines. To obtain a nontrivial solution we set the determinant
of the system equal to zero yielding an equation for the exponent /

N =22

4 sin?(l7) + H cos(lay) 2
A

1=<k=4 l=i<j=4

tan (/a;)tan(foy) = 0. (10)

The solution / of this equation is a function of the angles and the transmis-
sibility ratios which we may express as / = (i, d, R, Ri).

Once the values of / are determined then the eigenfunction expansion for
the pressure can be written. To perform a leading order analysis (in r) we
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focus on the (/;, /;) pair. These are the first two positive solutions of ( 10).
(We emphasize that using /, alone to represent the flow near the node is
incorrect since the eigenfunctions corresponding to /; and /, are both ap-
proximately linear and are of comparable numerical magnitude. Moreover
if [, is the dominant mode then our formalism automatically accounts
for that.)

Let V, and V, represent the leading pair of velocity eigenfunctions corre-
sponding to (/,, /;). Then to leading order the velocity V can be written V =
BV, + BV,. Let I and D be the points of intersection of the base circle with
the front. (See Fig. 6.) Then we call (i, d, 8, 8, r,) an approximate elementary
wave if

V;-n;:VD-nD‘ (ll)

U- ny U- np
Here n; and V, (respectively n;, and V) are the unit normal vector to the
front and the velocity V at I (respectively D), and U is parallel to the layer
interface.

When 7 and d are given, (11) is a linear homogeneous equation in 8 and
8, and has a unique solution (up to a multiplicative constant). However, if
V;and i are given, (11) may fail to have a solution or the solution may fail
to be unique. The nonuniqueness can be seen even in the exact solutions
when M = 1. In this case if the flow is parallel to the interface then for any i
both 4 = 0 and d = = are solutions of (7). For M # 1, nonuniqueness or
nonexistence occurs when the flow is approximately parallel to the layer in-
terface.

To specify an approximate elementary wave we indicate two of the three
angles (7, d, a). Here a is the angle between the velocity field V in Sector 4
and the front at the point 7. (See Fig. 6.) Figure 7 shows contours of ¢ as a

FIG. 6. The calculations for approximate elementary waves are performed on the base circle.
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170° 160° 150° 140°130°7 120° 90’ 20° 10°

T T
T
d

) 1

170° 160° 150° 90° 30°20° 10°
a

0 i T

FiG. 7. The angle of refraction d vs the angle of incidence i for selected values of the angle
between the flow and the front «. Each curve corresponds to a specific value of @ which is denoted
in degrees on the horizontal edges of the plot. The points G and S and the curve I' correspond
to the solutions obtained by Glimm and Sharp. Here R,, = 10 and R; = 5.

function of i and d for R,, = 10 and R, = 5. Points ¢ and S correspond to
the solutions of (9) and the curve T' corresponds to the solutions of (8). All
contours, except I, are tangential to the i = d line at (0, 0) and (, 7). The
solutions on these contours in the vicinity of (0, 0) and (r, 7 ) are comparable
to the solutions suggested by Proposition 2.

6.1. The Strength of the Singularity

The strength of the singularity at the node depends on the deviation of /,
and /, from unity. For given angles i and 4 these deviations depend on R,
and R; but the maximum deviation depends only on R,,. One can use (10)
to show

p 1 R, —1
max (1 —1/)= max ([, —1)=—sin"! —"——.
O<i,d<w ( 1) O<id<r ( ) T R,+ 1

(12a)
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Table I shows extreme values of /, and /; for selected values of the mobility
ratio. The radial dependence of the first velocity eigenfunction is through g(r)
= rh~!, This velocity may tend to infinity as r approaches zero. In that case
g will double if r is reduced by a factor of v = 2'/")_ The approximate
minimum value of v is indicated in Table I.

As a general rule the singularity is very weak and it is necessary to use very
large or very small values of M to get an appreciable singularity. One can also
use (10) to show

% I . (Rpy—1)(Re— 1)
-1)= L—1)=- : I i |
oy ()= max (b= 1) = sin R Ty (120

We see that the influence of the layer interface on the singularity strength
decreases as R, approaches unity.

6.2. The Stability and Evolution of Approximate Elementary Waves

In this section we give an intuitive description of the evolution of approx-
imate elementary waves. Ideally one needs a system of differential equations
for i, d, and a. Such a system will take into account the influence of the far
field data and the rotation of the front due to refraction as well as the influence
of the singularity. Here we only consider the effect of the latter.

The leading order velocity term is not constant in the vicinity of the node.
Rather it has a radial dependence. As a result the normal velocity along the
front changes, and this causes a rotation in the shock front. To measure this
effect we define 7; and 7,

av - av.
B, =B (13)
or

iz i,

T —

Here n is the unit normal to the front in the counterclockwise direction, and
V is the velocity field of the approximate elementary wave. A positive value

TABLE 1
THE STRENGTH OF THE SINGULARITY AT THE NODE DECREASES AS M APPROACHES UNITY

M=R, M =1/R,, min /, max /, min vy
1 1 1 1 w0

4/3 0.75 0.954 1.046 4 % 10¢

2 0.50 0.892 1.108 6 X 10°
10 0.10 0.695 1.305 10

o0 0 0.500 1.500 4
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for 7; indicates a widening of the angle of incidence at /. We assume that the
resulting rate of rotation of the front at 7 is equal to the rate of change of the
angle of incidence,

5
6—;=~r,. (14a)

A similar argument applies to 7, and in particular

(;—f = T4 (14b)

The rate of evolution of an approximate elementary wave depends on the
magnitudes of 7; and 7, However, these are essentially determined by the
degree of singularity of V at the node. Hence, rapid evolution of the wave is
most likely when R,, > 1. On the other hand when R,, =~ 1 then 7; and 7,
~ 0 and the evolution of the wave is mainly controlled by the far field data.

To decide if an exact elementary wave is stable we consider all nearby
approximate elementary waves and compute 7; and 7, for them. If the signs
of r; and 7, indicate an evolution toward the exact elementary wave then it
is stable. Figures 8(a) and (b) show, respectively, the signs of 7; and 7, for

() (®

~—a\ AT

YRS

~aG e
gl oy
0 i n

(©) (d)

FIG. 8. (a) The sign of r;, gives the direction of change of i. (b) The sign of 7, gives the direction
of change of d. (¢) Schematic diagram for the evolution of the front. (d) The flow is from Sectors
1 and 2 into 4 and 3. Here M = 0.1 and R, = 5.



320 MOHSEN MAESUMI

approximate elementary waves with M = 0.1 and Ry = 5. Figure 8(c¢) combines
the results revealing that points G and .S represent the only two stable solutions.
G corresponds to a solution of (9) where iny, = o) =7 — i, dyyy = a3 = 7 —
d, and the flow is from the fast layer into the slow layer. (See Fig. 5(d).) This
solution is called a G-wave. S corresponds to a second solution of (9) where
Ihyp = @2 = d, dnyp = aq = i, and the flow is from the slow layer into the fast
layer. (See Fig. 5(c).) This solution is called an S-wave.

From (13) it is immediately clear that a reversal of velocity changes the
signs of 7; and 7,. Hence if an elementary wave is stable then under velocity
reversal it becomes unstable. The velocity reversal also changes the mobility
ratio from M to 1/M. Therefore M = 1 is the critical mobility ratio. Numerical
computations of 7; and 7, have consistently shown that (I) For M < 1 the
points G and S represent stable solutions. (II) There are no stable elementary
waves for M > 1. (III) The solutions on the curve T are not stable for R,, # 1.

The approximate solution described in Proposition 2 is also unstable. How-
ever, due to an extremely weak singularity, its relaxation time is typically
much longer than the contact time between the layer and the advancing front.
As a result the configuration of this wave persists for the duration of the
contact.

6.3. The Sensitivity of Stable Solutions

For the G-wave, the incoming segment of the front is in the fast layer (K
> 1), while for the S-wave the incoming portion of the front is in the slow
layer (K < 1). As a result the G-wave and the S-wave have different sensitivities
to perturbations. This fact, which is not reflected in (14), is caused by the
asymmetrical role of iy, and d,, in determining the evolution of the front.
In Fig. 7 we see that in the G-wave dy,, is not sensitive to the angle of the
incoming front iny,, since near G and for a fixed @ = 90°, |8dhyp/ dinyp| =
|6d/68i| < 1. However, the S-wave is very sensitive because near .S we have
| 6y Binys| = |6i/6d| > 1. As a result it is more difficult to capture the S-
wave than the G-wave. Moreover, the G-wave has a larger tolerance for iy,
than d,,,.

7. NUMERICAL EXPERIMENTS

To verify the results of the stability analysis we performed several numerical
experiments. The numerical implementation is independent of our formal
analysis and the two approaches give consistent conclusions. In particular we
show the stability of the G-wave while the S-wave is shown to have a much
weaker stability. The following four sections explain the numerical method
for solving (1), the algorithm for the propagation of the node and refraction
of the front, the experimental design, and the case studies.
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7.1. Front Tracking Method

The numerical experiments reported here use the front tracking method
[21-24]. In front tracking the wave front is introduced as a computational
degree of freedom in the calculation. A dynamic grid generator aligns the
mesh with the discontinuity curves and the propagation of the front is based
directly on the dynamics of flow equations at the discontinuity. The direct
use of one-dimensional Buckley-Leverett dynamics in the front propagation
step gives optimal resolution for these waves.

Front tracking as applied to (1) consists of three steps—computation of
the pressure, propagation of the discontinuity curves, and computation of the
saturation. Given the initial and boundary conditions and the initial front
we compute the pressure and velocity using a finite element method to solve
(1b, Ic). The front is then propagated by using the theoretical solution of the
associated Riemann problem. Finally we propagate the saturation in the in-
terior regions (where the solution is smooth) by solving ( 1a) using, for example,
the Engquist—Osher upstream weighting method [25].

7.2. The Node Propagator Routine

We propagate a front by moving a finite subset of its points along the
direction normal to the front. However, near the node a special propagation

D

A

(a) (b)

FIG. 9. The computational regions for testing the stability of G- and S-waves. The horizontal
edges are Dirichlet boundaries and vertical edges are zero Neumann boundaries for the pressure
field. The direction of the main flow and the value of the permeability k(x) of each region are
identified. The dashed lines represent the exact elementary waves for the given permeabilities
(they meet the Neumann boundaries at 90°).
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routine is needed to account for the two-dimensional character of the wave.
Here we briefly describe our implementation which is based on the dynamical
consistency condition, hyperbolic stability, and compatibility with known
Riemann solutions (i.e., the M = 1 case).

We use the velocity field near the node to distinguish between the upstream
and downstream sides. Then, by hyperbolic stability, the section of the front
on the upstream side defines the true incident front. To propagate the front
near the node at time ¢ we first find the new node location for time ¢ + At by
propagating the incident front and finding its intersection with the layer. (At
this step we ignore the refraction of the front by the layer and if necessary we
extrapolate the incident front to obtain the intersection.) Then we apply the
dynamical consistency condition by setting the newly deflected section of the
front at an angle that takes into account the velocity field of the deflected side.

7.3. The Design of the Experiments

The singularity at the node is the driving force for the evolution of ap-
proximate elementary waves and the formation of exact solutions. However,
the singularity is weak and its effect can be dominated by the higher order
terms in the eigenfunction expansion for the velocity. If the influence of the

FIG. 10. A test of the stability of the G-wave where the mobility ratio is M = 0.1 and the
permeability ratio is R, = 5. The picture superimposes several steps in the evolution of the
advancing shock front.
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TABLE 11
CONVERGENCE TO G-WAVE OCCURS WHEN M < | (HERE R}, = 5)

Experiment
Theory
M t 0.00 0.25 0.50 0.75 1.00 e

0.10 Ihyp 146 123 119 117 115 114.1
0.10 dhyp 96 160 159 157 156 155.9
0.50 Inyp 146 137 130 125 119 114.1
0.50 i 96 162 161 160 160 155.9
0.75 Ihyp 146 142 139 136 130 114.1
0.75 hyp 96 163 163 162 162 155.9

far field velocities is not carefully controlled it is unlikely that the elementary
waves will be observed on the grid sizes available to our study. Therefore the
geometry and the boundary conditions for these experiments were designed
to provide far field velocities consistent with the elementary wave solutions.

The experimental configurations are shown in Fig. 9. Both designs allow
an elementary wave (the dotted line) to extend from the node out to a bound-
ary. In Fig. 9(a) the two triangular regions at the lower right and upper left
corners have very low permeabilities. These regions have a negligible flow
and the layer interfaces AB and CD act approximately as Neumann bound-
aries, i.e., there is minimal flow across these curves. In Fig. 9(b) the two
triangular regions at the lower right and the upper left have very high per-
meabilities and the layer interfaces £F and HT act approximately as Dirichlet
boundaries, i.e., the flow direction is normal to these curves.

7.4. Case Studies
We performed two types of stability tests. In the first group of experiments

we used the geometry of Fig. 9(a). Initially a shock front was located at

TABLE 111
CONVERGENCE TO G-WAVE OCCURS WHEN M < | (HERE R;, = 5)

Experiment
Theory
M t 0.00 0.25 0.50 0.75 1.00 0

0.10 Ihyp 74 105 111 114 115 114.1
0.10 s 165 148 150 152 156 155.9
0.50 fnyp 74 87 93 98 102 114.1
0.50 iy 165 148 147 149 151 155.9
0.75 Ihyp 74 86 84 90 96 114.1

0.75 Chyp 165 151 149 149 150 155.9
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TABLE 1V
STABILITY OF G-WAVE TO PERTURBATIONS OF THE PERMEABILITY RATIO (HERE M = 0.1)

Experiment
Theory
R, t 0.00 0.25 0.50 0.75 1.00 o0
5 i 128 121 119 117 114 114.1
5 Ay 83 139 147 156 155 155.9
3 - 128 120 120 120 120 1200
3 gy 100 149 150 150 150 150.0
15 T 128 113 110 107 104 104.5
15 dhyp 100 168 168 168 167 165.5

arbitrary angles with respect to the layer AC. The subsequent evolution of
the front was then used to study and validate the stability properties and the
convergence rate for the elementary wave. In the second group of experiments
we used Fig. 9(b) and varied the permeability of the central region. The local
formation of the resulting elementary wave was then studied. Figures 11-14
show the results of these case studies. Each figure displays the superimposed
positions of the front at certain time steps.

Figure 10 demonstrates the stability of the G-wave where M = 0.1 and R,
= 5. Two other experiments were conducted using the same configuration
but with different values of M. The results are summarized in Table II. The
rows of data in Table II list the node angles iy, (7) and dhy,(1), in degrees,
for the time development of the front. The column under “theory” shows
the corresponding angles for the G-wave from (9). The first two rows of data
correspond to Fig. 10. In this case the elementary wave formed rapidly. Lines

FIG. 11. An S-wave (at Ns) and a G-wave (at Ng) evolve from the interaction of the front and
the layer. The S-wave is more sensitive to perturbations than the G-wave and evolves more
erratically.
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t = final
’\ 174°
t=0

FIG. 12. A shock front crossing a layer at a small angle does not deflect. Here the flow is in
vertical direction.

3 and 4 of Table II show a run with A = 0.5 and R, = 5. We see that the
final angles deviate from the theoretical values by about 5°. Lines 5 and 6
correspond to a run with A = 0.75 and R, = 5. In this case the deviations
from theoretical values, especially for iy, are very large. Table III summarizes
the results of three experiments similar to those in Table Il but with a different
initialization of the front position.

We see that the convergence of approximate waves to a G-wave is likely
only if M < 1. For M = 0.75 the singularity is weak and the evolution toward
the G-wave is no longer visible. In fact the final angles in the latter case agree
with the unit mobility ratio case (7), rather than (9), to within 2°. Therefore
0.75 < M < 1 can only support a passive refraction and in this case one can
use (7) to estimate d accurately. These results are in general agreement with
the stability analysis and the estimate for the strength of the singularity.

Now we use the setup shown in Fig. 9(b) to study the stability of the G-
wave to perturbations of the permeability ratio, while the mobility ratio is
fixed at M = 0.1. In these experiments the far field velocities are not identical
with the velocity field of the forming elementary waves. Hence the results
give a stronger confirmation of the stability of the G-waves. In Table I'V the
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FIG. 13. An experiment similar to that in Fig. 10 except the mobility ratio is larger than 1, M
= 5. A slight perturbation of the front leads to the formation of a narrow finger.

first two rows of data correspond to the angles at the upper node Ny in Fig.
L1, where the permeability of the central region is 5. In lines 3 and 4, we
show the results for changing the permeability of the central region from 5
to 3. We expect the time-asymptotic front to have iy, = 120° and dhy, =
150°. This means that, compared to Fig. 11, the time-asymptotic front will
bend backward by about 6° at Ng;. In lines 5 and 6 we repeat the above
experiment for a central region permeability of 15. Now we expect the time-
asymptotic front to have iy, = 104.5° and dyy, = 165.5°. Thus, compared
to Fig. 11, the front will bend forward by about 10° at N,;. In these experiments
the time development of the G-wave confirmed the theoretical predictions.

Figure 11 also shows the evolution of the S-wave (at the lower node Ng).
The value of dy,, at the final time step differs by 4° from the theoretical value.
In other experiments, with a different initialization of the front, we observed
an erratic transition toward the S-wave. This wave is more sensitive to per-
turbations than the G-wave, since its upstream side corresponds to the slower
layer. In particular dy,, may oscillate around the theoretical value.

Figure 12 shows a shock front crossing a horizontal layer at a small angle.
We see that the front is not deflected, in agreement with the prediction of
Proposition 2. This result is independent of the permeability and mobility
ratios but it is necessary that the velocity direction near the node should not
make a small angle with the layer.
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Figure 13 shows the result of an experiment similar to Fig. 10 but with the
mobility ratio M = 5. For M > 1 the exact elementary wave is not stable and
we see the common occurrence of a finger originating at the node.

Figure 14 shows a shock front interacting with a vertical layer interface.
Here the mobility ratio is M = 10 and the permeability of the left layer is 5
times the permeability of the right layer. It appears that the time-asymptotic
front and the flow direction become tangential to the layer at the node. Our
numerical results in this case, especially the appearance of the finger, quali-
tatively agree with the experimental and computational results of Orr and co-
workers [26].

8. CONCLUSIONS

Using formal and numerical methods, a consistent analysis of wave re-
fraction in two-phase incompressible flow has been performed. -Stability of
elementary wave solutions has been determined. Within the formal framework
of this paper, the uniform asymptotics of scale invariance symmetry breaking

FI1G. 14. The interaction of a shock front and a vertical layer. Here M = 10 and the permeability
of the left side is 5 times the permeability of the right side. The flow is in vertical direction.
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is

developed, and the need for scale symmetry breaking approximate ele-

mentary waves is indicated.
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