Optimum Unit Ball for Joint Spectral Radius:
An Example from Four—Coefficient MRA

Mohsen Maesumi

Abstract. We give the exact value of joint spectral radius for certain
matrices by explicitly constructing an optimum unit ball and an opera-
tor norm. Our example matrices are associated with 4-coefficient dila-
tion equations which generate a multiresolution analysis. The method
proposed here can be used in the search for orthogonal solution of the
dilation equation with the highest Holder exponent. It can also be used
to decide if a given product of matrices is optimal, 4.e., it satisfies the
Finiteness Conjecture. The optimal ball is generated as the convex hull
of action of semigroup of matrices, normalized by their joint spectral
radius, on extreme points of a set of unit diameter which is maximal,
convex, symmetric, compact and invariant under the optimal product.

§1. Introduction

Joint spectral radius (JSR) of a family of matrices is the measure of maxi-
mal growth rate of long products of the family members. This concept has a
natural application in regularity analysis of compactly supported wavelets,
since the recursive algorithm also utilizes long products of a given set of
matrices. One can obtain the Holder exponent of such wavelets if JSR of
an associated pair of matrices can be estimated. Calculation of JSR is a
difficult task. Obtaining estimates is expensive and exact values, except
for special cases, are rarely known. A recent paper [15] attempts to show
that the general case is algorithmically unsolvable.

JSR is bounded from below by the normalized spectral radius of any
product and from above by the maximum normalized consistent norm of
products of length n for any n. In particular it is bounded from above by
the maximum operator norm of all matrices in the family.
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The Finiteness Conjecture [6, 11] claims that there is a finite product
whose normalized spectral radius is equal to JSR. If the attempt in [15]
succeeds then this conjecture may not be true in all cases. However, in
this report we demonstrate a simple method that can be used to verify if
a given product indeed satisfies the conjecture.

Suppose a particular product is believed to satisfy the Finiteness Con-
jecture. Then we generate an operator norm in which the maximum norm
of matrices equals the normalized spectral radius of the product (if the
claim is true), thereby confirming the guess.

Our particular example comes from the study of four-coefficient dila-
tion equations and the resulting multiresolution analyses (MRA). An issue
of interest is calculation of the Hélder exponent of corresponding wavelets
and identification of the smoothest one. Here we give the exact value of
JSR for the matrices associated with a particular wavelet studied in [3] and
confirm a conjecture by Colella and Heil [7] regarding its value. We also
show that the corresponding MRA is not the smoothest one.

42. Definitions and Preliminaries

Let M(q.C) be the set of all ¢ x ¢ matrices with complex entries. De-
note operator, consistent and vector norms by || - ||o, || - || and || - ||, re-
spectively. Consistent (or matrix) norms are submultiplicative, ||AB||. <
[|Allc]|B]le- Operator (or induced or lub) norms are defined by [|A]|l, =
max||z||,=1 ||4%||s, € C?. Operator norms are consistent but consistent
norms are not necessarily induced. ||A||, can be defined by viewing the
matrix as a vector in €7 . All norms on a finite dimensional space are
equivalent, i.e., given any two norms || - || and || - || there are b > a > 0
such that b||4||" > ||A|| = a||4]||’ for any A.

Suppose I is a collection of m matrices in M(q, C). Let £, = £,(T)
be the set of all m™ products of length n of the elements of ¥. Rota
and Strang [14] defined joint spectral radius (JSR) as p(%) = limsup
(|| []w), where pu(Z, || - ||o), the maximum normalized norm of prod-
ucts of length n of X, is maxaerz, ||4 ﬁ/”. Daubechies and Lagarias [6]
defined generalized spectral radius (GSR) as p(X) = limsup,,_, . pa(5),
where p,(X) = maxaer, p(A4), and g, the normalized spectral radius for
a product of length n, is (p(A4))"/*. Rota and Strang also gave another
definition, which we refer to as common spectral radius (CSR), by p(Z) =
inf)|.;). maxaex [|A||., where the infimum is over all consistent norms. All
of the various concepts of radius mentioned above, with the exception of
Pn, are invariant under similarity transformations.

In order to use the definition of CSR for computation it is advantageous
to restrict the space of norms over which the optimization is performed.
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The following lemmas show that we may take the infimum over the operator
norms acting on a certain subspace of €7 instead of all consistent norms.

Lemma 1. For every consistent norm ||-||. there is an operator norm ||- ||,
such that ||A||, < ||A]||. for all A. Therefore p(X) = inf}),||, maxaex ||A

s

Proof: Given a vector x define a matrix X whose columns are identical

with z. Define ||z||, = ||X||. then the induced norm satisfies ||A][, =
max,£o ||;;|| © = maXzo % < ||A4]|c as required.

Occasionally it happens that all elements of ¥ have the same lower
block triangular structure, perhaps after a similarity transformation. In
that case the calculation of CSR may be segmented accordingly as explained
below. Notice that if B is a p X p complex matrix then it can be mapped
into a 2p x 2p real matrix. In particular if B is real then the result of
mapping can be permuted into a block diagonal matrix with two identical
blocks. In any of above cases we apply the following lemma.

Lemma 2. If each A € ¥ has the same lower triangular block structure
with diagonal blocks A;, i = 1---k, and ¥; = {A;,; A € ¥} then p(X) =
max; p(X;) where p(5;) = inf)),|, maxa,ex, [|4:]]o-

Proof: This is essentially same as block triangularization lemmas of the
same nature that are used for JSR or GSR [1]. The result follows from
equivalence of CSR, JSR and GSR mentioned below. W

Corollary 1. If ¥ is real then p(Z) = inf),), maxesx ||A||, where the oper-
ator norm is induced from a real vector norm || A||o = maxjj,||=1 cere || Az]|

Proof: We map each 4 € ¥ into a 2¢ x 2¢ block diagonal matrix with
identical blocks and apply Lemma 2. B

Several papers have scrutinized the relationship between various ap-
proaches to spectral radius of a set of matrices. Here we describe some of
the findings. The first theorem in this category was stated by Rota and
Strang [14]. It asserted that JSR and CSR are equal, p(X) = p(¥). The
main step in the proof of the above theorem was the following. Suppose a
set ¥ and a consistent norm || - || are given. Then the necessary and suffi-
cient condition that there exists a consistent norm ||-||" such that ||A[|' <1
for all A € ¥ is that ¥ is product bounded, i.e., there is a K such that
[|A|]| € K for all n and A € £,(X).

Daubechies and Lagarias [6] showed p, () < p(X) < p(X) < pa(Z,
" ||-|]e)- Therefore, if consistent norms are used in the definition of JSR then
limsup may be replaced by lim or inf, as also stated in [14]. Similarly, in the
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definition of GSR limsup may be replaced by sup. They also conjectured
that p(X) = p(¥), and the conjecture was proved by Berger and Wang [1].
Hence the three definitions of spectral radius of a finite set of matrices agree.
In fact the agreement exists for infinite but bounded sets as well. So we may
talk of spectral radius of a set and denote it by p(Z) = p(Z) = p(Z) = j(Z).
Heil and Strang [8] showed that p(X) is a continuous function of X.

The Finiteness Conjecture [6, 11] states that for some finite n we have
p(E) = po(E). In the light of [15] the conjecture may not be true for all
cases. However no counterexample has been given. Calculating spectral
radius of a set of matrices by direct calculation of p,(Z) and p,(Z) is
extremely inefficient. The branch-and-bound method of Daubechies and
Lagarias [5] significantly reduces the cost of upper estimates. A refinement
in this method, including considerable savings for estimating lower bounds,
has been proposed by Gripenberg [10]. Some savings can be realized by
noticing the invariance of 3(A4), for A € £,(X), under exponentiation and
cyclic permutation of elements of the product A [13].

§3. Generating the Optimum Unit Ball

In this section we show how to investigate the possibility that a product is
optimal, i.e., it satisfies the Finiteness Conjecture. First, we start with an
example extensively studied by Colella and Heil [3]. Consider the two-scale
real dilation equation in four coefficients

d(x) = cop(22) + c10(2x — 1) + c2p(22 — 2) + c3(22 — 3). (1)

The pair of wavelet matrices whose infinite products produce ¢(x) are

co 0 0 cp cp O
To=|c2 ¢ o |, Ti=|ec ¢ ¢ ]. (2)
0 C3 Cog 0 0 C3

We assume ¢y + ¢o = ¢ + ¢y = 1, then the Hoélder exponent of ¢ can be
determined from two matrices obtained by restricting Ty and T} to the
space normal to the common left eigenvector (1,1,1). These matrices are

_ Cp 0 o 1-— Cp — Cg —Cp
SG_(*C:; 1—(’0—(?3)’ Sl_( (0] (-3)' (3)

Let ¥ = {85y, 51} and p(¥) < 1 then ¢ is Holder continuous with exponent
h > —log, p(¥) — e for any € > 0 [5]. To characterize the solutions that
give a multiresolution [2, 3, 12] we restrict the coefficients by

(00763) 7é (11 1): (4,(1)
(co —1/2)® + (c3 — 1/2)* = 1/2. (4.b)




Optimum Unit Ball 271

The behavior of ¢ at the particular point ¢* = (cg, c3) = (0.6, —0.2) has
been scrutinized with the expectation it leads to the smoothest orthogonal
scaling function [3] (note that p;(X) achieves its minimum at ¢*). Let
T = {57, 57} denote this particular value of ¥, where

. (06 0 ,_ (06 -06 :
S“_(o.:z 0.6)’ Sl_(o —0.2)‘ (5)

Colella and Heil carried extensive computations and conjectured [7]

o =p(T*) = max jn(T*) = p(SFSE Y13 = 0.659679. (6)
1<n <30

Gripenberg’s method produced the same result for products of length up

to 243. Here we confirm this conjecture and show that the corresponding

scaling function or multiresolution analysis are not the smoothest ones.

Proposition 1. Let A = S}/p* and B = S{/p*. Then p({A,B}) = 1.
There is a neighborhood of £* where p(X) = p(5154?), p(E) is a strictly
decreasing function of c3 and the Holder exponent of ¢ is a strictly increas-
ing function of c;.

Proof: Let P = BA'?. Note P has an eigenvalue —1, denote the corre-
sponding eigenvector by v. Define a polygonal unit ball i/ with 30 sides
whose vertices, in counterclockwise direction, are labeled as wy,--- v
and v_q,-+,v_15, where v_; = —v;, v; = A" lv for i = 1,---,14, and
vys = BAYv. One verifies that U is convex hence we can define a norm
[|- 1] based on it. Obviously, Av; is a vertex of i/ for ¢ =1,---,13 and B,
is a vertex of If for ¢ = 13,14. One also verifies Av; is in the interior of If
for ¢ = 14,15 and Bu; is in the interior of I for ¢ = 1,---,12,15. Therefore
p1({A, B}, || ||l.) = 1. On the other hand p,3({4, B}) > p(BA'%)1/13 =1,
We have p13 < p({A4, B}) < py therefore p({4, B}) = 1. The convexity of
the ball can be indicated by a system of inequalities of the form F(V) <0
where V' is the vector of vertices of the ball, F' is a vector of continuous
functions and the inequality is component-wise. We say the ball has slack
if the vertices satisfy F(V') < 0. If any component of F(V) is zero then we
say the ball is eritical. A ball becomes critical for example if two adjacent
sides are parallel or if two vertices coincide. Here U/ has slack and the entire
construction of the ball remains stable under small changes in say c3. In
particular for e3 € [—.2, —.24+1077] we may obtain the spectral radius of &
through p(S184%)'/1®. One verifies that p(X) is a decreasing function of ¢;
in the vicinity of ¢* and hence Holder exponent is an increasing function.

Remark. If we use any of the 13 cyclical permutations of BA'?, we
will obtain the same unit ball (up to a scale). Given 0 < n < 12, let
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P’ = A7 "BA™ and P'v' = —v'. Then the vertices are given by v{ =
At o4 = Typagn 8wy = BATY and o] = AT 4BA% for
i=mn+4,---,15. Here v}, corresponds to v; in Proposition 1.

The approach used for the example problem mentioned above can be
generalized. It can also be the basis of a method for estimating the spectral
radius of a set of matrices. Here we list the notations that will be used.
Let &1 denote the set & augmented with identity, £, = L',*(E) the set
of all products of & and £} the generated semigroup. The action of a
family of matrices F on a set of vectors W is the collection of vectors
FW. The Hermitian adjoint of P is shown by P*. For a set of points
D let C(D) indicate the convex hull of D. The closure of C(1)) is shown
by C(D). Suppose z,y, z belong to a closed convex set and 0 < « < 1, if
z = ax + (1 — o)y implies # = y = z then z is called an extreme point
of the set [9]. A compact set is the convex hull of its extreme points
(Krein-Milman theorem). The vertices of a nondegenerate polyhedron are
its extreme points. When a vertex becomes degenerate, e.g., when all of
its adjacent sides become parallel, then it is no longer an extreme point.
But degenerate vertices are important for us since they indicate a ball has
become critical.

Suppose p(X) = 1 then P € L.(X) is called an optimal product if
p(P) = 1. We assume ¥ is product bounded then {P*,v = 1,2, .-} is
bounded, each eigenvalue satisfies |A| < 1 and P has a full set of eigenvec-
tors for eigenvalues with modulus one. We call G the generator for P if it
is the maximal set with a positive diameter which is convex, symmetric,
compact and invariant under P. In other words G is a ball (of a subspace
with maximal dimension) for which P is an isometry. The generator of
P may have polyhedral components {£P™v,m = 1,---,n} correspond-
ing to solutions of P™v = #£wv for some finite n, or ellipsoidal components
{z,2*Sx = 1} corresponding to positive definite matrices S as solutions
to P*SP = S§. (The eigenvalues of P with modulus one determine the
ergodicity of P and can be used to subdivide various cases. If ¥ has block
diagonal structure then one constructs a generator for each block.)

Suppose ¥ is product bounded and ¢ is a ball then I/’ = C(L}{) is also
a ball. Let ||| be the norm in which ¢/’ is a unit ball, then max{||A||’, 4 €
Y} < 1. This is the alternative construction for the norms given in [14].
Here, however, we do not start with an arbitrary ball, instead we identify
the generator set G of P and create the optimal ball S = C(£fG) from it.
The advantage of using G is that its extreme points generate the vertices
(usually extreme points) of the optimum ball. In contrast, an arbitrary
starting point will mark a set of nondescript points on the boundary of the
optimal ball. (If & hecomes a low dimensional ball of a subspace embedded

in the current space then we restrict © to the complementary subspace and
repeat the construction to get a subinvariant ball.)
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Suppose v # 0, Fy = C({£v}) and F,, = C(Z"'fn_]) for n > 1. Let
Vo = {£v} and for n > 1 define V,,, the vertices of F,,, to be the points of
¥+V, _1 which are on the boundary of F,,.

Conjecture 1. If there are v’ € V,, and m > n such that v’ is in the interior
of F,, then p(X) > 1.

This conjecture implies that none of the vertices at a given stage of
iteration will be overtaken by the next set of vertices. Consequently, if this
occurs we do not have an optimal product. One case of this conjecture is
simple, namely when v’ is v itself. This is the subject of the next lemma.

Definition 1. Given a vector v # 0, a compact set of vectors V' and a
finite set of matrices ¥, we say v is dominated by ¥ acting on V if there
are o > 1 and w € C(XV) such that v = w/a.

Lemma 3. If v is dominated by 11, a finite subset of £,(X), acting on {v}
then p(X) > 1.

Proof: First assume IT = ¥ and consider any norm in which ||v|| = 1.
Then for w’ € C(Xv) we have max ||w'|| > o. On a compact convex set the
maximum of a convex function is attained at an extremum point. Norm
function is convex hence max|[w’|| occurs at ||Av|| for an A € . Hence
max ||4|| > « > 1. Since this occurs for any norm, by the definition of
CSR, we have p(¥) > 1. For general II we have £,(II) C £,(X) Lence
p(E)zp(ll)>1. W

Suppose numerical evidence suggests that ¥ is product bounded, p(%)
= 1 and P is the optimal product. To verify the guess, one starts with
Go, the generator of P, and constructs G,, = C(X7G,_1) for n > 1. If this
process terminates, i.e., G, = G,_1 for some n > 1, then I? is indeed an
optimal product. When Gy is ellipsoidal (with no polyhedral subset, i.c.., P
is ergodic on the ellipsoid) we need only to check G; = Gy. For the general
case we have the following conjecture.

Conjecture 2. If P is optimal then G,, = G, for some finite n.

In this preliminary report we have emphasized the importance of anal-
ysis of spectral radius from a geometrical point of view. In a future article
we will report on several related issues, e.q., properties of the optimal prod-
uct, an adaptive branch-and-bound method where the norm changes with
cach iteration of the ball and a larger table of values of Holder exponent
for the example problem.
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