Trig Equations
Solve each of the following.
1. \(2 + 5 \cos \left(\frac{x}{4} \right) = 0\)

2. \(2 + 5 \cos \left(\frac{x}{4} \right) = 0\) on the interval \([-10, 40]\).

3. \(13 \cos(6x) - 10 = 0\) on the interval \([1, 1.25]\).

4. \(8 \sin(3x) + 4 = 3\) on the interval \([-1, 3.5]\).

Exponential and Logarithm Equations
Solve each of the following.
5. \(5e^{2^x - 6} - 12 = 0\)

6. \(3xe^{2-6x} - 5xe^{7x+4} = 0\)

7. \(\ln(x + 1) + \ln(2x - 3) = 1\)

Rates of Change and Tangent Lines
8. An object is moving and we want to determine if it’s moving to the right (positive velocity), left (negative velocity), or not moving (zero velocity) at \(t = \frac{1}{2}\). The position of the object is given by
\[
s(t) = \frac{1}{\pi} \sin(\pi t) - 16t^2
\]
To answer this problem you’ll need to estimate the instantaneous velocity at \(t = \frac{1}{2}\). Do this by computing the average velocity \((i.e.\; the\; average\; rate\; of\; change\; of\; the\; position\; function)\) on the intervals \([t, \frac{1}{2}]\) and \([\frac{1}{2}, t]\) using the following values of \(t\). Use at least 6 decimal places for all computations.
(a) 0.49 (b) 0.499 (c) 0.4999 (d) 0.49999 (e) 0.51 (f) 0.501 (g) 0.5001 (h) 0.50001

9. Find the tangent line to \(f(x) = 10 \ln(1 - x) + 7e^{8x}\) at \(x = -4\). To estimate the slope of the tangent line compute the slopes of the secant lines, \(m_{PQ}\), at the following points and use the results to estimate the slope.
(a) -3.9 (b) -3.99 (c) -3.999 (d) -3.9999 (e) -4.1 (f) -4.01 (g) -4.001 (h) -4.0001

Continued on Back ⇒
The Limit

10. Explain in your own words what is meant by
\[\lim_{x \to -12} f(x) = 3 \]

Does the above limit mean that \(f(-12) = 3 \)? Why or why not?

For problems 11 & 12 use at least 7 decimal places in the function evaluations.

11. Evaluate \(f(x) = \frac{x^2 - 25}{x^2 - 4x - 5} \) at the given points and estimate the value of \(\lim_{x \to -5} \frac{x^2 - 25}{x^2 - 4x - 5} \).

 (a) 4.9 (b) 4.99 (c) 4.999 (d) 4.9999 (e) 5.1 (f) 5.01 (g) 5.001 (h) 5.0001

12. Evaluate \(g(x) = \frac{\sin(6x) + 10x}{x^2 - 4x} \) at the given points and estimate the value of \(\lim_{x \to 0} \frac{\sin(6x) + 10x}{x^2 - 4x} \).

 (a) ± 0.1 (b) ± 0.01 (c) ± 0.001 (d) ± 0.0001